2016-05-30 22:30:45 -07:00
|
|
|
import numpy
|
|
|
|
from numpy.ctypeslib import ndpointer
|
|
|
|
import ctypes
|
|
|
|
|
|
|
|
# h5py used by (uncalled) h5_write(); not used in currently-called code
|
|
|
|
|
|
|
|
from fdfd_tools import vec, unvec, waveguide_mode
|
|
|
|
import fdfd_tools, fdfd_tools.functional, fdfd_tools.grid
|
|
|
|
import gridlock
|
|
|
|
|
|
|
|
from matplotlib import pyplot
|
|
|
|
|
|
|
|
__author__ = 'Jan Petykiewicz'
|
|
|
|
|
|
|
|
|
|
|
|
def complex_to_alternating(x: numpy.ndarray) -> numpy.ndarray:
|
|
|
|
stacked = numpy.vstack((numpy.real(x), numpy.imag(x)))
|
|
|
|
return stacked.T.astype(numpy.float64).flatten()
|
|
|
|
|
|
|
|
|
|
|
|
def solve_A(A, b: numpy.ndarray) -> numpy.ndarray:
|
|
|
|
A_vals = complex_to_alternating(A.data)
|
|
|
|
b_vals = complex_to_alternating(b)
|
|
|
|
x_vals = numpy.zeros_like(b_vals)
|
|
|
|
|
|
|
|
args = ['dummy',
|
|
|
|
'--solver', 'QMR',
|
|
|
|
'--maxiter', '40000',
|
|
|
|
'--atol', '1e-6',
|
|
|
|
'--verbose', '100']
|
|
|
|
argc = ctypes.c_int(len(args))
|
|
|
|
argv_arr_t = ctypes.c_char_p * len(args)
|
|
|
|
argv_arr = argv_arr_t()
|
|
|
|
argv_arr[:] = [s.encode('ascii') for s in args]
|
|
|
|
|
|
|
|
A_dim = ctypes.c_int(A.shape[0])
|
|
|
|
A_nnz = ctypes.c_int(A.nnz)
|
|
|
|
npdouble = ndpointer(ctypes.c_double)
|
|
|
|
npint = ndpointer(ctypes.c_int)
|
|
|
|
|
|
|
|
lib = ctypes.cdll.LoadLibrary('/home/jan/magma_solve/zsolve_shared.so')
|
|
|
|
c_solver = lib.zsolve
|
|
|
|
c_solver.argtypes = [ctypes.c_int, argv_arr_t,
|
|
|
|
ctypes.c_int, ctypes.c_int,
|
|
|
|
npdouble, npint, npint, npdouble, npdouble]
|
|
|
|
|
|
|
|
c_solver(argc, argv_arr, A_dim, A_nnz, A_vals,
|
|
|
|
A.indptr.astype(numpy.intc),
|
|
|
|
A.indices.astype(numpy.intc),
|
|
|
|
b_vals, x_vals)
|
|
|
|
|
|
|
|
x = (x_vals[::2] + 1j * x_vals[1::2]).flatten()
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def write_h5(filename, A, b):
|
|
|
|
import h5py
|
|
|
|
# dtype=np.dtype([('real', 'float64'), ('imag', 'float64')])
|
|
|
|
h5py.get_config().complex_names = ('real', 'imag')
|
|
|
|
with h5py.File(filename, 'w') as mat_file:
|
|
|
|
mat_file.create_group('/A')
|
|
|
|
mat_file['/A/ir'] = A.indices.astype(numpy.intc)
|
|
|
|
mat_file['/A/jc'] = A.indptr.astype(numpy.intc)
|
|
|
|
mat_file['/A/data'] = A.data
|
|
|
|
mat_file['/b'] = b
|
|
|
|
mat_file['/x'] = numpy.zeros_like(b)
|
|
|
|
|
|
|
|
|
|
|
|
def test0():
|
|
|
|
dx = 50 # discretization (nm/cell)
|
|
|
|
pml_thickness = 10 # (number of cells)
|
|
|
|
|
|
|
|
wl = 1550 # Excitation wavelength
|
|
|
|
omega = 2 * numpy.pi / wl
|
|
|
|
|
|
|
|
# Device design parameters
|
|
|
|
radii = (1, 0.6)
|
|
|
|
th = 220
|
|
|
|
center = [0, 0, 0]
|
|
|
|
|
|
|
|
# refractive indices
|
|
|
|
n_ring = numpy.sqrt(12.6) # ~Si
|
|
|
|
n_air = 4.0 # air
|
|
|
|
|
|
|
|
# Half-dimensions of the simulation grid
|
|
|
|
xyz_max = numpy.array([1.2, 1.2, 0.3]) * 1000 + pml_thickness * dx
|
|
|
|
|
|
|
|
# Coordinates of the edges of the cells.
|
|
|
|
half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max]
|
|
|
|
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
|
|
|
|
|
|
|
# #### Create the grid, mask, and draw the device ####
|
|
|
|
grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3)
|
|
|
|
grid.draw_cylinder(surface_normal=gridlock.Direction.z,
|
|
|
|
center=center,
|
|
|
|
radius=max(radii),
|
|
|
|
thickness=th,
|
|
|
|
eps=n_ring**2,
|
|
|
|
num_points=24)
|
|
|
|
grid.draw_cylinder(surface_normal=gridlock.Direction.z,
|
|
|
|
center=center,
|
|
|
|
radius=min(radii),
|
|
|
|
thickness=th*1.1,
|
|
|
|
eps=n_air ** 2,
|
|
|
|
num_points=24)
|
|
|
|
|
2016-07-03 14:23:24 -07:00
|
|
|
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
|
2016-05-30 22:30:45 -07:00
|
|
|
for a in (0, 1, 2):
|
|
|
|
for p in (-1, 1):
|
|
|
|
dxes = fdfd_tools.grid.stretch_with_scpml(dxes, axis=a, polarity=p, omega=omega,
|
|
|
|
thickness=pml_thickness)
|
|
|
|
|
|
|
|
J = [numpy.zeros_like(grid.grids[0], dtype=complex) for _ in range(3)]
|
|
|
|
J[1][15, grid.shape[1]//2, grid.shape[2]//2] = 1e5
|
|
|
|
|
|
|
|
A = fdfd_tools.functional.e_full(omega, dxes, vec(grid.grids)).tocsr()
|
|
|
|
b = -1j * omega * vec(J)
|
|
|
|
|
|
|
|
x = solve_A(A, b)
|
|
|
|
E = unvec(x, grid.shape)
|
|
|
|
|
|
|
|
print('Norm of the residual is {}'.format(numpy.linalg.norm(A.dot(x) - b)/numpy.linalg.norm(b)))
|
|
|
|
|
|
|
|
pyplot.figure()
|
|
|
|
pyplot.pcolor(numpy.real(E[1][:, :, grid.shape[2]//2]), cmap='seismic')
|
|
|
|
pyplot.axis('equal')
|
|
|
|
pyplot.show()
|
|
|
|
|
|
|
|
|
|
|
|
def test1():
|
|
|
|
dx = 40 # discretization (nm/cell)
|
|
|
|
pml_thickness = 10 # (number of cells)
|
|
|
|
|
|
|
|
wl = 1550 # Excitation wavelength
|
|
|
|
omega = 2 * numpy.pi / wl
|
|
|
|
|
|
|
|
# Device design parameters
|
|
|
|
w = 600
|
|
|
|
th = 220
|
|
|
|
center = [0, 0, 0]
|
|
|
|
|
|
|
|
# refractive indices
|
|
|
|
n_wg = numpy.sqrt(12.6) # ~Si
|
|
|
|
n_air = 1.0 # air
|
|
|
|
|
|
|
|
# Half-dimensions of the simulation grid
|
|
|
|
xyz_max = numpy.array([0.8, 0.9, 0.6]) * 1000 + (pml_thickness + 2) * dx
|
|
|
|
|
|
|
|
# Coordinates of the edges of the cells.
|
|
|
|
half_edge_coords = [numpy.arange(dx/2, m + dx/2, step=dx) for m in xyz_max]
|
|
|
|
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
|
|
|
|
|
|
|
# #### Create the grid and draw the device ####
|
|
|
|
grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3)
|
|
|
|
grid.draw_cuboid(center=center, dimensions=[8e3, w, th], eps=n_wg**2)
|
|
|
|
|
2016-07-03 14:23:24 -07:00
|
|
|
dxes = [grid.dxyz, grid.autoshifted_dxyz()]
|
2016-05-30 22:30:45 -07:00
|
|
|
for a in (0, 1, 2):
|
|
|
|
for p in (-1, 1):
|
|
|
|
dxes = fdfd_tools.grid.stretch_with_scpml(dxes,omega=omega, axis=a, polarity=p,
|
|
|
|
thickness=pml_thickness)
|
|
|
|
|
|
|
|
half_dims = numpy.array([10, 20, 15]) * dx
|
|
|
|
dims = [-half_dims, half_dims]
|
|
|
|
dims[1][0] = dims[0][0]
|
|
|
|
ind_dims = (grid.pos2ind(dims[0], which_shifts=None).astype(int),
|
|
|
|
grid.pos2ind(dims[1], which_shifts=None).astype(int))
|
|
|
|
wg_args = {
|
|
|
|
'omega': omega,
|
|
|
|
'slices': [slice(i, f+1) for i, f in zip(*ind_dims)],
|
|
|
|
'dxes': dxes,
|
|
|
|
'axis': 0,
|
|
|
|
'polarity': +1,
|
|
|
|
}
|
|
|
|
|
|
|
|
wg_results = waveguide_mode.solve_waveguide_mode(mode_number=0, **wg_args, epsilon=grid.grids)
|
|
|
|
J = waveguide_mode.compute_source(**wg_args, **wg_results)
|
|
|
|
H_overlap = waveguide_mode.compute_overlap_e(**wg_args, **wg_results)
|
|
|
|
|
2016-07-03 16:45:38 -07:00
|
|
|
pecg = gridlock.Grid(edge_coords, initial=0.0, num_grids=3)
|
2016-07-03 14:23:51 -07:00
|
|
|
# pecg.draw_cuboid(center=[700, 0, 0], dimensions=[80, 1e8, 1e8], eps=1)
|
|
|
|
# pecg.visualize_isosurface()
|
|
|
|
|
2016-07-03 16:45:38 -07:00
|
|
|
pmcg = gridlock.Grid(edge_coords, initial=0.0, num_grids=3)
|
|
|
|
# pmcg.draw_cuboid(center=[700, 0, 0], dimensions=[80, 1e8, 1e8], eps=1)
|
|
|
|
# pmcg.visualize_isosurface()
|
|
|
|
|
|
|
|
A = fdfd_tools.operators.e_full(omega, dxes,
|
|
|
|
epsilon=vec(grid.grids),
|
|
|
|
pec=vec(pecg.grids),
|
|
|
|
pmc=vec(pmcg.grids)).tocsr()
|
2016-05-30 22:30:45 -07:00
|
|
|
b = -1j * omega * vec(J)
|
|
|
|
x = solve_A(A, b)
|
|
|
|
E = unvec(x, grid.shape)
|
|
|
|
|
|
|
|
print('Norm of the residual is ', numpy.linalg.norm(A @ x - b))
|
|
|
|
|
|
|
|
def pcolor(v):
|
|
|
|
vmax = numpy.max(numpy.abs(v))
|
|
|
|
pyplot.pcolor(v, cmap='seismic', vmin=-vmax, vmax=vmax)
|
|
|
|
pyplot.axis('equal')
|
|
|
|
pyplot.colorbar()
|
|
|
|
|
|
|
|
center = grid.pos2ind([0, 0, 0], None).astype(int)
|
|
|
|
pyplot.figure()
|
|
|
|
pyplot.subplot(2, 2, 1)
|
|
|
|
pcolor(numpy.real(E[1][center[0], :, :]))
|
|
|
|
pyplot.subplot(2, 2, 2)
|
|
|
|
pyplot.plot(numpy.log10(numpy.abs(E[1][:, center[1], center[2]]) + 1e-10))
|
|
|
|
pyplot.subplot(2, 2, 3)
|
|
|
|
pcolor(numpy.real(E[1][:, :, center[2]]))
|
|
|
|
pyplot.subplot(2, 2, 4)
|
|
|
|
|
|
|
|
def poyntings(E):
|
|
|
|
e = vec(E)
|
|
|
|
h = fdfd_tools.operators.e2h(omega, dxes) @ e
|
|
|
|
cross1 = fdfd_tools.operators.poynting_e_cross(e, dxes) @ h.conj()
|
|
|
|
cross2 = fdfd_tools.operators.poynting_h_cross(h.conj(), dxes) @ e
|
|
|
|
s1 = unvec(0.5 * numpy.real(cross1), grid.shape)
|
|
|
|
s2 = unvec(0.5 * numpy.real(-cross2), grid.shape)
|
|
|
|
return s1, s2
|
|
|
|
|
|
|
|
s1x, s2x = poyntings(E)
|
|
|
|
pyplot.plot(s1x[0].sum(axis=2).sum(axis=1))
|
|
|
|
pyplot.hold(True)
|
|
|
|
pyplot.plot(s2x[0].sum(axis=2).sum(axis=1))
|
|
|
|
pyplot.show()
|
|
|
|
|
|
|
|
q = []
|
|
|
|
for i in range(-5, 30):
|
|
|
|
H_rolled = [numpy.roll(h, i, axis=0) for h in H_overlap]
|
|
|
|
q += [numpy.abs(vec(E) @ vec(H_rolled))]
|
|
|
|
pyplot.figure()
|
|
|
|
pyplot.plot(q)
|
|
|
|
pyplot.title('Overlap with mode')
|
|
|
|
pyplot.show()
|
|
|
|
print('Average overlap with mode:', sum(q)/len(q))
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# test0()
|
|
|
|
test1()
|